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Abstract. We study the electronic and impurity states in a three-dimensional corner under an
applied electric field. It is found that the electronic states in the corner are discrete in all three
directions, similar to the electronic state behaviour in a quantum dot, and the eigenenergies of
the discrete electronic levels increase with the electric field strength. The impurity states in the
three-dimensional corner have similar features as those in the quantum dots, and their maximum
binding energy increases, but the impurity position corresponding to the peak binding energy
moves towards the corner, as the electric field strength increases. The results also show that the
binding energy of the ground impurity state at the corner point in the absence of electric field
is equal to that of the fourth impurity excited state in the bulk.

1. Introduction

The advances in microfabrication techniques, such as molecular beam epitaxy (MBE) and
metal–organic chemical vapour deposition (MOCVD), make it possible to confine electrons
in one, two or all three directions (quantum wells, wires and dots). The interfaces in these
low-dimensional systems play a significant role in determining their electronic and optical
properties, and step structures usually exist at the interfaces [1–7], which affect their optical
transition spectra considerably. In fact, a stepped surface or V-shaped groove of large
size in an interface can be viewed as a corner. This model has been adopted by Lee and
Antoniewicz [8, 9] in studying the surface bound states and surface polaron states.

In our previous papers [10–13], we have studied the electronic and impurity states in
a two-dimensional corner with and without an applied electric field, and many interesting
results were obtained. For example, it was found that the ground impurity binding energy
in the absence of electric field is equal to that of the third impurity excited state in the bulk
when the impurity is placed at the corner point [10], and the electronic and impurity states
in the corner under an applied electric field are similar to those in quantum wires [13].
In the present paper, we study the electronic and impurity states in a three-dimensional
corner under an applied electric field. Because of the existence of the external electric field,
the electrons are pushed towards the corner and the motion of electrons in the corner is
confined in all three directions, analogous to that in a quantum dot. It is expected that the
electronic and impurity state behaviour in the three-dimensional corner under the externally
applied electric field is similar to that in quantum dots. In section 2, the electronic states
are analysed. In section 3, the impurity binding energies are calculated with the use of the
variational method. The numerical results and discussion are given in section 4.
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2. Electronic states

Let us consider an electron moving in a three-dimensional corner structure with the well
material inside the corner and barrier material outside the corner, and an electric field
F = (1, 1, 1)(F/

√
3) is applied along the diagonal line of the corner. In the effective-mass

approximation, the Hamiltonian for electron states in the corner can be written

H(0)(r) = P 2

2mb
+ eFx/

√
3+ eFy/

√
3+ eFz/

√
3+ V (r) (1)

wheremb is the electron-band effective mass andr andP are the electron coordinate and
momentum, respectively. The electron-confining potential well in the corner is given by

V (r) =
{

0 x > 0, y > 0 andz > 0

∞ otherwise.
(2)

2.1. F = 0

In the absence of electric field, the electron energy levels in the corner are continuous. As
the simplest approximation [10], the electronic wavefunction for the HamiltonianH(0)(r)
can be written

8(r) = N0 sin(kxx) sin(kyy) sin(kzz) (3)

whereN0 is the normalization constant and the electron energy is given by

E = h̄2

2mb
(k2
x + k2

y + k2
z ). (4)

The ground-state wavefunction and energy level are

80(r) = 0 (5a)

E0 = 0. (5b)

2.2. F > 0

When the electric field is added, as the variables can be separable [13], the electronic
wavefunction for HamiltonianH(0)(r) is written

8(r) = N0Ai(ξ)Ai(η)Ai(ζ )

ξ = (x/ l)− λl
η = (y/ l)− λm
ζ = (z/ l)− λn
l = [
√

3h̄2/(2mbeF)]
1/3

(6)

where l is the electron characteristic length under the electric field,λl , λm andλn are the
dimensionless constants, andAi(ξ) is the Airy function which is defined by [14]

Ai(ξ) =
{

1
3

√
|ξ |[J1/3(

2
3|ξ |3/2)+ J−1/3(

2
3|ξ |3/2)] ξ < 0

(1/π)
√
ξ/3K1/3(

2
3|ξ |3/2) ξ > 0

(7)
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whereJ1/3 is the Bessel function with order 1/3, andK1/3 is the modified Bessel function
of the second kind with order 1/3. The electronic wavefunction8(r) satisfies the following
boundary conditions

8(r)|x=0 = 8(r)|y=0 = 8(r)|z=0 = 0 (8a)

which are equivalent to

Ai(−λl) = Ai(−λm) = Ai(−λn) = 0 (8b)

where l, m, n = 1, 2, 3, . . . are positive integers,λl(m,n) is the zero point of the Airy
function, andλ1 = 2.338 11,λ2 = 3.271 09,λ3 = 5.520 56, . . . . The electron energy levels
are given by

Elmn = h̄2

2mbl2
(λl + λm + λn). (9)

The electronic wavefunction in the ground state is

80(r) = N0Ai(ξ)Ai(η)Ai(ζ )

ξ = (x/ l)− λ1

η = (y/ l)− λ1

ζ = (z/ l)− λ1

(10)

and the electron energy in the ground state is

E0 = 3h̄2λ1/(2mbl
2). (11)

3. Impurity states

When the impurity is placed at the positionr0 = (x0, y0, z0) inside the corner, the
Hamiltonian for impurity states can be written

H(r) = P 2

2mb
+ eFx/

√
3+ eFy/

√
3+ eFz/

√
3+ Vion(r)+ V (r) (12)

where

Vion(r) = −e2/(ε|r − r0|) (13)

andε is the dielectric constant of the well material.
From equation (3), we can see that the first term of the expansion series of the electronic

wavefunction in the absence of electric field is proportional toxyz when x, y and z are
small. As in the case of quantum wells [15] and quantum wires [16] and in the light of the
above analyses on electronic wavefunctions in the corner, we construct the following trial
wavefunction for the ground impurity state

ψ(r) = N(β)xyz exp(−β|r − r0|) for F = 0 (14)

and

ψ(r) = N(β)Ai(ξ)Ai(η)Ai(ζ ) exp(−β|r − r0|)
ξ = (x/ l)− λ1 for F > 0

η = (y/ l)− λ1

ζ = (z/ l)− λ1

(15)
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whereN(β) is the normalization constant,β is the variational parameter. The above trial
wavefunction satisfies the boundary conditions.

As usual, the impurity binding energyEb is defined as the energy difference between the
bottom of the electronic conduction band without the impurity and the ground-state energy
level of impurity states in the corner

Eb = E0−min
β
〈ψ(r)|H(r)|ψ(r)〉. (16)

The above integral was calculated numerically.

4. Results and discussion

As an example, we choose AlAs/GaAs for numerical calculations [10] with GaAs being
the well material and AlAs being the barrier material. For simplicity, the energy is in units
of effective Rydbergs, Ryd∗ = mbe4/(2h̄2ε2), and the length is normalized to the effective
Bohr radiusa∗0 = h̄2ε/(mbe

2).

Figure 1. The electron confined energy levels versus the applied electric field in a three-
dimensional corner.E0, E1 andE2 represent the electron confined energy levels of the ground
state, the first excited state and the second excited state, respectively.

The dependence of the electron confined energy levels on the applied electric field in
a three-dimensional corner is shown in figure 1, which indicates that the electron energy
levels increase with the electric field strength. Because of the existence of the electric
field, the electrons are confined in all three directions in the corner, which is similar to the
case where the electrons are confined in a quantum dot. We define the equivalent sizes of
quantum dots in such a way that the ground electron energy level in the three-dimensional
corner is equal to that in a cubic quantum box or a spherical quantum dot as follows

h̄2

2mbl2
3λ1 = h̄2

2mb

3π2

L2
eq

for a cubic quantum box

h̄2

2mbl2
3λ1 = h̄2

2mb

4π2

D2
eq

for a spherical quantum dot
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Figure 2. The equivalent sizes of quantum dots versus the applied electric field for the case
where the ground electronic level in the three-dimensional corner is equal to that in the quantum
dots.Leq andDeq represent the equivalent side width of a cubic quantum box and the equivalent
diameter of a spherical quantum dot, respectively.

whereLeq is the equivalent side width of the cubic quantum box [17, 18] andDeq is the
equivalent diameter of the spherical quantum dot [19–23]. Figure 2 shows the relationship
between the equivalent sizes of quantum dots and the applied electric field strength. The
results of figure 2 indicate that, with increasing electric field strength, the equivalent sizes of
quantum dots decrease, indicating stronger confinement on electrons in the corner under the
stronger electric field. Moreover, the equivalent size of the cubic quantum box is smaller
than that of the spherical quantum dot for the same electric field strength, which is due to
the fact that the volume of the cubic box is larger than that of the spherical dot when the
side width (Leq) of the cubic quantum box is equal to the diameter (Deq) of the spherical
quantum dot, because the confinement of electrons in a quantum dot is related only to the
quantum dot volume [18].

Figure 3 shows the dependence of the impurity binding energy on the impurity position
along the diagonal line of the three-dimensional corner for three different electric fields.
In the absence of electric field, we found that the impurity binding energy at the corner
point (x0 = y0 = z0 = 0) is 0.0625 Ryd∗, which is equal to the value of the fourth
impurity excited state in the bulk (1/16 Ryd∗). From figure 3, it can be also seen that,
when the electric field is not applied (F = 0), with increasing distance of the impurity
away from the corner, the impurity binding energy increases gradually, and finally tends to
the value 1 Ryd∗ in the bulk; however, when the electric field is applied, with increasing
distance of the impurity away from the corner, the impurity binding energy increases at first,
then reaches a peak value, and finally decreases monotonically. Moreover, as the electric
field strength increases, the peak impurity binding energy becomes larger, and the impurity
position corresponding to the peak value is closer to the corner point. These results are
consistent with the variations in impurity binding energy with the sizes of quantum dots
[17–23]. Figure 4 shows the dependence of the impurity binding energy on the impurity
position along one corner line for different electric fields. The variations in impurity binding
energy with the impurity position in figure 4 are similar to those in figure 3, except that the
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Figure 3. The ground impurity binding energy versus the impurity position along the diagonal
line of the three-dimensional corner for three different electric fields.

Figure 4. The ground impurity binding energy versus the impurity position along one corner
line of the three-dimensional corner for three different electric fields.

impurity binding energies along the corner line are smaller than those along the diagonal
line. In addition, when the electric field is absent and the impurity position is far away from
the corner point, the impurity binding energy along one corner line is equal to the value
(1/9 Ryd∗) of the third impurity excited state in the bulk [10, 13].

Figure 5 shows the dependence of the impurity binding energy in the three-dimensional
corner on the electric field strength for three different impurity positions. The results in
figure 5 indicate that, when the impurity is at the corner point (x0 = y0 = z0 = 0),
with increasing electric field strength, the impurity binding energy increases monotonically;
however, when the impurity is away from the corner point, the impurity binding energy
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Figure 5. The ground impurity binding energy in a three-dimensional corner versus the electric
field strength for three different impurity positions.

Figure 6. The maximum impurity binding energy and its corresponding impurity position in a
three-dimensional corner versus the electric field strength.

increases at first, then reaches a peak value and finally decreases monotonically. Moreover,
when the impurity is far away from the corner point, such asx0 = y0 = z0 = 7a∗0,
with increasing electric field strength, the impurity binding energy almost decreases
monotonically, as the peak point is very close to the corner point. The above results also tell
us that there is a maximum impurity binding energy in the corner for a fixed electric field.
Figure 6 shows the dependence of the peak impurity binding energy and its corresponding
impurity position in a three-dimensional corner on the electric field strength, which indicates
that the peak impurity binding energy increases and its corresponding impurity position
moves towards the corner point as the electric field strength increases.
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The results obtained above are interesting and their physical interpretation and discussion
are as follows. Because the electric field pushes the electrons towards the corner, the
electrons in the well material are confined in all three directions in the three-dimensional
corner and the electron energy in the corner is quantized completely, like the electrons
confined in a quantum dot. As the electric field strength increases, the confinement of the
electrons in the corner is strengthened, and the electron energy levels in the corner increase,
as shown in figure 1. As we know, the electron energy levels in a quantum dot increase
with decrease in its dimensions [17–23], and the equivalent sizes of quantum dots for the
three-dimensional corner under an applied electric field decrease with increase in the electric
field strength, as shown in figure 2. The impurity behaviour in the three-dimensional corner
under the applied electric field is also like that in a quantum dot, due to the confinement
of electrons in the corner. When the impurity is at the corner (x0 = y0 = z0 = 0), it is
equivalent to an impurity located at one corner point of a quantum box, and the impurity
binding energy increases monotonically with the increase in the electric field strength, like
the case where the impurity binding energy at one corner point of a quantum box increases
monotonically with the decrease in its dimension [18]. When the impurity is not at the corner
point, such as when the impurity position is atx0 = y0 = z0 = 1 andx0 = y0 = z0 = 7a∗0
as shown in figure 5, the relative position of the impurity with respect to the centre of the
equivalent dot can be moved by changing the electric field strength, that is, the relative
impurity position can be changed through the centre of the equivalent dot by increasing
the electric field strength. It is well known that the impurity at the centre of quantum
dots has a maximum binding energy [17–23]; that the impurity binding energy increases
at first, then reaches a peak value and finally decreases monotonically for the impurity
position not at the corner point, as shown in figure 5, is a result of the variations in distance
between the impurity and the centre of equivalent dot with the electric field strength. When
the electric field strength is fixed, this means that the equivalent size of quantum dot is
fixed. As the impurity position is changed from the corner point, then to the centre of
the equivalent quantum box and finally away from the quantum box, the impurity binding
energy increases at first, then reaches a peak value and finally decreases monotonically, as
shown in figures 3 and 4. That the maximum impurity binding energy increases and its
corresponding impurity position moves towards the corner point as the electric field strength
increases, as shown in figure 6, is also in agreement with the results that the impurity binding
energy at the centre of a quantum dot increases with decreases in its dimension [17–23].
Moreover, we found that the trial wavefunction for the ground impurity state in the corner
point (x0 = y0 = z0 = 0) in the absence of electric field, as shown in equation (14), is
a combination of the wavefunctions of the fourth impurity excited state in the bulk if the
variational parameterβ is equal to 1/4, that is

ψ(r) = (c/2 i)[94,3,2(r, θ, ϕ)−94,3,−2(r, θ, ϕ)]

where c is a constant and9nlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ) is the eigenfunction of the
hydrogen atom [14]; so the ground impurity binding energy at the corner point without
electric field is equal to the value (1/16 Ryd∗) corresponding to the fourth impurity excited
state in the bulk.

In summary, we have investigated the electronic and hydrogenic impurity states in a
three-dimensional corner under an applied electric field, and the Airy function was adopted
to deal with the electronic states, while a variational approach was used to treat the impurity
states. It was found that the electron and impurity state behaviour in the three-dimensional
corner under the applied electric field is similar to that in quantum dots. The results also
showed that the ground impurity binding energy at the corner point in the absence of electric
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field is equal to that of the fourth impurity excited state in the bulk. As we know, it is
easier to fabricate a three-dimensional corner structure than to fabricate a quantum dot in
experiments, and our theoretical results may provide a new way to detect and apply the
quantum confining effects of quantum dots.
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